8,792 research outputs found

    Existence of periodic solutions for the Lotka-Volterra type systems

    Get PDF
    In this paper we prove the existence of non-stationary periodic solutions of delay Lotka-Volterra equations. In the proofs we use the degree for S1S^1-equivariant maps

    Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy

    Full text link
    We have performed a depth-profile analysis of an all-oxide p-n junction diode n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering. Systematic core-level shifts were observed during the gradual removal of the ZnO overlayer, and were interpreted using a simple model based on charge conservation. Spatial profile of the potential around the interface was deduced, including the charge-depletion width of 2.3 nm extending on the ZnO side and the built-in potential of 0.54 eV

    Onset of J/ψJ/\psi Melting in Quark-Gluon Fluid at RHIC

    Full text link
    A strong J/ψJ/\psi suppression in central Au+Au collisions has been observed by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). We develop a hydro+J/ψJ/\psi model in which hot quark-gluon matter is described by the full (3+1)-dimensional relativistic hydrodynamics and J/ψJ/\psi is treated as an impurity traversing through the matter. The experimental J/ψJ/\psi suppression pattern in mid-rapidity is reproduced well by the sequential melting of χc\chi_{\rm c}, ψ′\psi', and J/ψJ/\psi in dynamically expanding fluid. The melting temperature of directly produced J/ψJ/\psi is well constrained by the participant-number dependence of the J/ψJ/\psi suppression and is found to be about 2.Tc2.T_{\rm c} with TcT_{\rm c} being the pseudo-critical temperature.Comment: 5 pages, 5 figures, Submitted to Phys. Rev. C. (Rapid Communication

    Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Get PDF
    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of s=130A\sqrt{s}=130AGeV Au+Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark-gluon plasma with large volume and low net baryon density.Comment: LaTeX, 4pages, 4 figures. To appear in the proceedings of Fourth International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2001), Nov 26-30, 2001, Jaipur, Indi

    Can transport peak explain the low-mass enhancement of dileptons at RHIC?

    Full text link
    We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant DD and the relaxation time Ï„J\tau_{\rm J}. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.Comment: To appear in the conference proceedings for Quark Matter 2011, May 23 - May 28, Annecy, Franc

    Mechanism of phase transitions and the electronic density of states in (La,Sm)FeAsO1−x_{1-x}Fx_x from ab initio calculations

    Full text link
    The structure and electronic density of states in layered LnFeAsO1−x_{1-x}Fx_x (Ln=La,Sm; xx=0.0, 0.125, 0.25) are investigated using density functional theory. For the xx=0.0 system we predict a complex potential energy surface, formed by close-lying single-well and double-well potentials, which gives rise to the tetragonal-to-orthorhombic structural transition, appearance of the magnetic order, and an anomaly in the specific heat capacity observed experimentally at temperatures below ∼\sim140--160 K. We propose a mechanism for these transitions and suggest that these phenomena are generic to all compounds containing FeAs layers. For x>x>0.0 we demonstrate that transition temperatures to the superconducting state and their dependence on xx correlate well with the calculated magnitude of the electronic density of states at the Fermi energy.Comment: 4 pages, 3 figures, 1 tabl

    Electron localization and a confined electron gas in nanoporous inorganic electrides

    Get PDF
    The nanoporous main group oxide 12CaO.7Al(2)O(3) (C12A7) can be transformed from a wide-gap insulator to an electride where electrons substitute anions in cages constituting a positive frame. Our ab initio calculations of the electronic structure of this novel material give a consistent explanation of its high conductivity and optical properties. They show that the electrons confined in the inert positive frame are localized in cages and undergo hopping between neighboring cages. The results are useful for the understanding of behavior of confined electron gas of different topology and electron-phonon coupling, and for designing new transparent conductors, electron emitters, and electrides
    • …
    corecore